Summary:

The Government of the Islamic Republic of Mauritania has submitted the attached proposal* for the Common Guitarfish (*Rhinobatus rhinobatus*) to be included in Annex II to the CMS.

Proposals for the same taxon to be included in Annex II the CMS have been independently submitted by the Governments of Israel, Senegal and Togo.

The related proposals are found in documents UNEP/CMS/COP12/Doc.25.1.24(a) (c) et (d).
PROPOSAL FOR THE INCLUSION OF
THE COMMON GUITARFISH (RHINOBATOS RHINOBATOS) ON APPENDIX II OF THE
CONVENTION ON THE CONSERVATION OF MIGRATORY SPECIES OF WILD ANIMALS

A. PROPOSAL:
Inclusion of the Common Guitarfish (*Rhinobatus rhinobatus*), in Appendix II.

B. PROPOLENT: Mauritania

C. SUPPORTING STATEMENT

1. **Taxon**
 1.1 **Class:** Chondrichthyes (Subclass: Elasmobranchii)
 1.2 **Order:** Rhinopristiformes
 1.3 **Family:** Rhinobatidae
 1.4 **Genus or Species:** *Rhinobatos rhinobatos* (Linnaeus, 1758)
 1.5 **Scientific Synonyms**
 1.6 **Common name(s):**
 - English: Common Guitarfish, Violinfish
 - Spanish: Guitarra, Guitarra Común, Guitarró
 - French: Guitare De Mer Commune

2. **Overview**

Rhinobatos rhinobatos is a medium-sized cartilaginous fish within the Rhinobatidae family of rays. Mature adults (>70-80 cm TL) in the transboundary stocks off the coast of West Africa and in the Mediterranean migrate seasonally from deep water (100-180 m) into shallow coastal areas to give birth and mate. Seasonal north-south migration is also reported from the Atlantic. The Common guitarfish is targeted by coastal fisheries for its meat and fins during its breeding migrations, and is also taken as a bycatch in net and trawl fisheries.

This species is no longer recorded from the Atlantic coast of Europe and has also been extirpated from much of the northern Mediterranean. The regional assessments for European waters (2015) and the Mediterranean (2016) are also Endangered.

The Common guitarfish *Rhinobatos rhinobatos* would greatly benefit from better regional and international co-operation to regulate target and bycatch fisheries (particularly those associated with seasonal breeding migrations), halt population declines, and ensure the recovery of Mediterranean, Southern European and Western African stocks.
3. Migrations

3.1 Kinds of movement, distance, the cyclical and predictable nature of the migration

Populations of *Rhinobatos rhinobatos* undertake seasonal migrations, in which reproductive adults move from deep water up to 180 m (Notarbartolo di Sciara et al. 2007), to nearshore shallow waters to give birth and mate. These migrations are so predictable that West African fishers in Mauritania, Senegal, Guinea, Guinea-Bissau, and Sierra Leone synchronize their fishing activities with the arrival of *R. rhinobatos* (Ducrocq & Diop 2006, Newell 2016). Similar migrations occur in other parts of this species’ range (e.g. Turkey: Başusta et al. 2008).

These seasonal migrations result in cyclical and predictable crossings of international borders, both between States and between territorial waters and the high seas. The deeper water location of adults outside the breeding season is poorly studied, although trawl surveys carried out off the coast of Sierra Leone indicate that *R. rhinobatos* moves northwards during the winter-spring seasons (Notarbartolo di Sciara et al. 2007).

3.2 Proportion of the population migrating, and why that is a significant proportion

All reproductively active adults migrate to breed. Research has not been undertaken into the migrations of juveniles and sub-adults.

Fully understanding migratory patterns in this species will likely be hindered by declining population sizes. Furthermore, guitarfish tagging studies often report low recapture rates, possibly due to high tag loss, and/or high induced tagging mortality (Dunlop and Mann 2013).

The migration patterns of *R. rhinobatos* appear similar to those of other members of this genus. *Rhinobatos horkelli*, the critically endangered Brazilian guitarfish, migrates to shallow coastal waters (depth less than 20 m) from November to March to reproduce (Lessa and Vooren 2007). Movement from deeper waters to shallow areas is also well documented for *Rhinobatos productus* and *Rhinobatos glaucostigma*, in the Gulf of California. These two guitarfish species are caught in bottom gillnets from March to June, when gravid females migrate to shallower waters (Blanco-Parra et al. 2009). This seasonal migration to shallow waters makes breeding guitarfishes particularly vulnerable to coastal gillnet and trawl fishing activities.

4. Biological data

4.1 Distribution (current and historical)

The historical distribution of *Rhinobatos rhinobatos* (Figure 2) ranged from shallow coastal waters to at least 100m and perhaps 180m depth throughout the Mediterranean and in the subtropical regions of the eastern Atlantic from the Bay of Biscay south to Angola (Notarbartolo di Sciara et al. 2007). Few historical fishery-independent studies have examined the range of this species and most knowledge of its former distribution comes from fishery landings data and historical collections. This species has declined throughout much of its range, and has now likely been extirpated from the Mediterranean waters of Spain, France, Italy, and perhaps the entire Adriatic Sea. (Newell 2016).

R. rhinobatos is now more prevalent in the southern and eastern regions of the Mediterranean (McEachran et al. 1984), particularly around the Gulf of Gabes on the East coast of Tunisia (Capapé et al 1997) and across to the Turkish waters of the eastern Mediterranean (Ismen et al. 2007).

While there are historical records of *R. rhinobatos* in northern Mediterranean waters, they appear to have been extirpated from this part of their range (Lteif, 2015). In the Mediterranean coastline off France, *R. rhinobatos* was formerly caught by trawlers (Capapé et al. 1975). Current information suggests that the species is now extinct in this region due to overfishing (Capapé et al. 2006; Newell 2016). Once frequently recorded in the Spanish waters during the early 20th century, *R. rhinobatos* have been extirpated in this region including waters around the Balearic Islands where they were once “considered as typical inhabitants of unvegetated sandy bottoms” (Notarbartolo di Sciara et al. 2007).
The Mediterranean International Trawl Survey (MEDITS) survey programme uses bottom trawl surveys to collect information on population distribution and demographic structure for benthic and demersal species on the continental shelves and along the upper slopes, in 10-800m off Morocco, Spain, and France; the Tyrrhenian Sea including the coast of Corsica, Sardinia, and Sicily; and the Adriatic, Ionian, and Aegean Seas, and coast of Cyprus. These surveys did not record any *R. rhinobatos* during 1994-2015 (Newell 2016, MEDITS 2016).

R. rhinobatos still occurs in the waters of Tunisia, where there is a targeted fishery and the species is also commonly taken as bycatch (Abdel-Aziz et al. 1993, Lteif 2015). Similarly, it occurs in fishery landings, along the north coast of Africa, and in the eastern Mediterranean from Israel where the species was considered common as of 2006, to southeastern Turkey (Newell 2016, Notarbartolo di Sciara et al. 2007). In a historical reference to fishing activity along the Israeli coast or in the nearby Bardawil Lagoon on the Egyptian Sinai Peninsula, Lernau and Golani (2004) stated, “swarms of *Rhinobatos rhinobatos* are captured with purse seines.” (Newell 2016). In the Lebanese longline fishery *R. rhinobatos* is one of the most commonly observed elasmobranchs landed with high volumes landed in Tripoli (Lteif 2015).

Information regarding this species in the eastern Atlantic is limited, but records indicate that this species is still frequently found from Mauritania to Sierra Leone where Rhinobatids are caught as bycatch of shrimp trawl fisheries operating in shallow inshore waters (Diop & Dossa 2011; Newell 2016; Notarbartolo di Sciara et al. 2007).

4.2 Population (estimates and trends)
There are no quantitative abundance estimates for *Rhinobatos rhinobatos*. Species specific information is not collected across much of the species’ range, making abundance estimates and population trends difficult. In most instances, it is listed as present in waters based on fishery-dependent data. Available information from these sources indicates that the species has been either extirpated from parts of its range or is in severe decline. Current data suggest that *R. rhinobatos* has been extirpated from the coastal waters of Spain, France, and Italy by long term intensive fishing pressure (Notarbartolo di Sciara et al. 2007).

Few sharks and rays are targeted by fisheries in the northern Mediterranean, yet many elasmobranch species are caught as an incidental bycatch (Fowler et al. 2005). Several elasmobranch populations are considered overfished with other species, such as the Mediterranean populations of sawfishes (*Pristis* spp.) and common skates (*Dipturus batis*) now locally extinct. A sympatric species blackchin guitarfish *Rhinobatos cemiculus* has also been extirpated for parts of its range due to intense fishing pressure. MEDITS bottom surveys found no instances of *R. rhinobatos* suggesting that this species is locally extinct in the northern Mediterranean.
In the eastern part of the Mediterranean, where *R. rhinobatos* is sometimes targeted, abundance data are also limited. However, in key fishing states like Tunisia, where this species has been targeted by artisanal fishers for decades, landings indicate declines in abundance and catches contain a large proportion of immature individuals (Notarbartolo di Sciara et al. 2007). Many other targeted shark and ray species in these waters are also experiencing population declines. While Lteif (2015) notes that this species is one of the most common batoid species in the Lebanese longline fishery, fishing pressure has led to a loss of elasmobranch diversity in these waters.

Along the eastern Atlantic, guitarfish abundance in the West African countries of Mauritania, Senegal, Gambia, Guinea-Bissau, Guinea, and Sierra Leone, has declined (Diop and Dossa 2011). While species specific information is not available, *R. rhinobatos* was once a historically abundant species but is now described as scarce (Newell 2016). At the Banc d’Arguin National Park (PNBA) in Mauritania, fishing for blackchin guitarfish takes place all year round, including in breeding areas. It impacts upon both juveniles and breeding females.

4.3 Habitat (short description and trends)

R. rhinobatos occurs in coastal, lagoonal and estuarine sandy bottomed, unvegetated habitats, from very shallow water to depths of at least 100 m offshore (Notarbartolo et al. 2007 cite a maximum depth of 180 m).

4.4 Biological characteristics

Species description

Rhinobatos rhinobatos is a medium-sized cartilaginous fish within the Rhinobatidae family of rays, or batoid fishes. The smallest individual reported had a total length of 22 cm, and the largest (unconfirmed) was ~200 cm (Newell 2016), although Last et al. (2016) report a maximum length of about 100 cm. This species is distinguished by the presence of slightly enlarged pectoral fins with the anterior edge of the pectoral fin attached to the side of the head, wedge shaped disc, pointed triangular snout, and a dorsoventrally flattened body. Two upright dorsal fins are separated with the first located well behind the rear tips of the pelvic fin. Rostral ridges are widely spaced over their length and anterior nasal flaps moderately developed. The dorsal surface of *R. rhinobatos* ranges from greenish brown to reddish brown with faint bluish-grey longitudinal stripes and markings. Ventral surface is white (Last et al. 2016).

Feeding and diet

Rhinobatos rhinobatos is a bottom dwelling species that consumes a variety of macrobenthic organisms such as crustaceans, fishes, and molluscs (Abdel-Aziz 1993b, Basusta et al. 2007, Lteif 2015, Newell 2016). Stomach content analysis by Enajjar et al. (2007) from fish collected in the Gulf of Gabes (southern Tunisia) found that crustaceans were the most important prey for juveniles, and crustaceans and fishes were the primary prey for adults. Lteif (2015) found six prey categories: crustaceans (Penaeidae, Brachyura, Squillidae, and juvenile Nephropidae), fish (Teleostei) and cephalopods (Octopodidae), in the stomachs of individuals sampled from Lebanese waters. This study also found that *R. rhinobatos* exhibits a mixed feeding strategy. Juveniles of the Nephropidae family were an important prey group in autumn, Teleostei and Brachyura in winter, and Penaeidae in both seasons. Basusta et al. (2007) concluded that these fish are indiscriminate predators, preying on any species available regionally (Newell 2016).

Reproductive characteristics

This species is a medium sized guitarfish reaching up to approximately 100 cm (Last et al. 2016) in length, although recorded sizes vary widely in different locations, with Mediterranean specimens apparently reaching a larger size than those from the Atlantic (Newell 2016). Maturity is reached around 75 cm total length (TL) for females and 70 cm TL for males. Information regarding litter sizes vary. One study in in Alexandria waters, Egypt found litter sizes to range between 8 -14 pups (Abdel-Aziz 1993), while others note 2 -7 pups per litter with an average pup size of approximately 25 cm TL (Last et al 2016). This species is aplacentally
viviparous, producing live young with embryo nutrition provided by a yolk sac.

Reproduction likely occurs once a year, however there are accounts of short gestation period in some locations that may indicate two reproductive events. Capapé et al. (1975), found that gestation lasted approximately four months in individuals in the Gulf of Gabes, Tunisia, but Enajjar (2008) found that gestation lasted between 10-12 months in individuals in the same location (Table 1). In Alexandria waters, Egypt, ovarian egg size and male gonadosomatic index peaked in July and August, indicating summer spawning.

While age information regarding this species is limited, *R. rhinobatos* matures between two and four years of age and may grow comparatively quickly compared to other elasmobranchs (Başusta et al. 2007; Ismen et al. 2007). Başusta et al. (2008) determined the age-length relationship for this species and found a maximum age of 24 years in Turkish waters. (Some studies indicate no significant difference in size between sexes (Abdel-Aziz 1993, Lteif 2015), but females reach maturity at a slightly larger size and reach greater lengths (literature review by Newell 2016). Its limited reproductive capacity leaves *R. rhinobatos* vulnerable to overexploitation.

Table 1. Reproductive characteristics for *R. rhinobatos* (Table modified from Newell 2016)

<table>
<thead>
<tr>
<th>Mature Females TL (cm)</th>
<th>Mature Males TL (cm)</th>
<th>Litter size</th>
<th>Gestation period (months)</th>
<th>Area</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-108</td>
<td></td>
<td>4-6</td>
<td>4</td>
<td>Gulf of Gabès, southern Tunisia</td>
<td>Capapé et al. 1975</td>
</tr>
<tr>
<td>85-143</td>
<td>79-114</td>
<td>-</td>
<td>-</td>
<td>Lebanese waters</td>
<td>Lteif 2015</td>
</tr>
<tr>
<td>75-120</td>
<td>70-100</td>
<td>1-13</td>
<td>10-12</td>
<td>Gulf of Gabès</td>
<td>Enajjar et al. 2008</td>
</tr>
<tr>
<td>80-162</td>
<td>70-172</td>
<td>4-8</td>
<td>9</td>
<td>Tunisian coast</td>
<td>Capapé et al. 1997</td>
</tr>
<tr>
<td>86-181</td>
<td>70-172</td>
<td>8-14</td>
<td>9</td>
<td>Waters off Alexandria, Egypt</td>
<td>Abdel Aziz et al. 1993</td>
</tr>
<tr>
<td>75-146</td>
<td></td>
<td>-</td>
<td>-</td>
<td>Iskenderun Bay, Turkey</td>
<td>Demirhan et al. 2010</td>
</tr>
<tr>
<td>78-153</td>
<td>-</td>
<td>4-8</td>
<td>10-12</td>
<td>Ouakam, Senegal</td>
<td>Capapé et al. 1999</td>
</tr>
</tbody>
</table>

4.5 Role of the taxon in its ecosystem
The role of *R. rhinobatos* in the ecosystem is not well understood. Little is known regarding the ecosystem function of many guitarfishes.

5. Threat data
5.1 IUCN Red List Assessment

5.2 Equivalent information relevant to conservation status assessment
None

5.3 Threats to the population (factors, intensity)
Fishing pressure is the largest threat facing populations of *R. rhinobatos*. This species has been extirpated from northern Mediterranean waters by unregulated fishing, including historic target fisheries and more recently as a bycatch. There is are still unregulated target fisheries in southern and eastern Mediterranean waters.

In the species’ West African range, Guinea-Bissau, West Africa, *R. rhinobatos* is one of the main targets of specialized shark fishing teams. An increase in fishing pressure beginning in the late 1990s led to severe declines and size reductions of individuals landed after just a few years and landings have diminished substantially (Fowler & Cavanagh 2005; Notarbartolo di
Sciara et al. 2007). Similar declines are reported over this same time period in Senegal (Notarbartolo di Sciara et al. 2007b). These fisheries mostly use gillnets to target *Rhinobatos* spp. with *R. rhinobatos* being a main target species. *R. rhinobatos* is also caught off beaches with hook and line on the coast of Mauritania.

In Mauritania, *R. cemiculus* is one of the three main target species for traditional fishermen. Fishing pressure has reduced the average size of *Rhinobatos* spp. caught in the Banck d’Arguin National Park in the north of Mauritania, and 95 per cent of *R. cemiculus* captured in the region are smaller than the size of 50 per cent (L50) sexual maturity (Diop&Dossa 2011).

5.4 **Threats connected especially with migrations**

The migration from deep water into shallow water pupping and mating grounds makes the reproductively active segment of the population highly vulnerable to targeting and bycatch in unregulated coastal fisheries.

5.5 **National and international utilization**

This species is utilised nationally for its meat. The meat may also be traded (salted and dried) with neighbouring African countries. The fins of guitarfishes are highly valued in international trade because of the density and quality of the fin rays that they contain. The demand for their fins as an ingredient for shark fin soup has been the major driver of target *Rhinobatos* fisheries on the coast of West Africa.

6. **Protection status and species management**

6.1 **National protection status**

All of the countries in the sub-region (Mauritania, Senegal, Cape Verde, Gambia, Guinea, Guinea Bissau and Sierra Leone), with the exception of Gambia, have adopted or integrated a national shark conservation and management action plan in their fishing management plans as part of the sub-regional shark conservation action plan (Diop & Dossa 2011). These plans have been drawn up based on the recommendations of the FAO International Plan of Action for Conservation and Management of Sharks (IPOA-SHARKS), which is intended to ensure the conservation and sustainable management of sharks through an emphasis on quality data collection for management purposes (IUCN-SSG 2016). These plans are still in the implementation phase in certain of these countries and it remains to be seen to what extent they will be effective in reducing the risk of extinction for *R. rhinobatos* and *R. cemiculus*.

6.2 **International protection status**

R. rhinobatos was listed in Annex II of the SPA/BD protocol of the Barcelona Convention in 2012. This “requires Mediterranean countries to undertake maximum, cooperative efforts for their protection and recovery, including controlling or prohibiting their capture and sale, prohibiting damage to their habitat, and adopting measures for their conservation and recovery.”

In 2012, the GFCM adopted recommendation GFCM/36/2012/3, which prohibits those sharks on Annex II of the SPA/BD Protocol from being retained on board, transhipped, landed, transferred, stored, sold or displayed, or offered for sale by Contracting Parties and Cooperating non-contracting Parties (CPCs) of the GFCM. It also requires CPCs to release the species unharmed and alive.

6.3 **Management measures**

Trawl fishing within 3 miles of the coast has been prohibited by the General Fisheries Council for the Mediterranean since 2012.
6.4 Habitat conservation
Some coastal marine protected areas and seasonal fisheries closures provide incidental protection for breeding, pupping and nursery grounds (Newell 2016).

6.5 Population monitoring
Very limited monitoring takes place in the majority of this species’ range.

7. Effects of the proposed amendment

7.1 Anticipated benefits of the amendment
Given the severe declines that R. rhinobatos has suffered throughout its range, that are as severe as regional extirpation, regional and international conservation action is needed as a matter of priority, particularly in the species remaining strongholds in West Africa.

This amendment will focus efforts to prioritise the conservation of the species, either domestically in range states or regionally and internationally via RFB's and RFMO's and complementary tools such as the CMS Memorandum of Understanding (MoU) on the Conservation of Migratory Sharks and CITES.

7.2 Potential risks of the amendment

7.3 Intention of the proponent concerning development of an Agreement or Concerted Action
If this proposal is successful R. rhinobatos will be automatically considered for listing on the CMS Memorandum of Understanding (MoU) on the Conservation of Migratory Sharks, where co-operative domestic and international action to improve its conservation status can be prioritised under the MOU’s aim to achieve and maintain a favourable conservation status for migratory sharks throughout their range.

8. Range States

Some portion of the transboundary stocks of Rhinobatos rhinobatos occur in areas beyond national jurisdiction, particularly in the Mediterranean Sea, therefore CMS Article I h) should be considered in determining a Range State:

“A Range State in relation to a particular migratory species means any State […] that exercises jurisdiction over any part of the range of that migratory species, or a State, flag vessels of which are engaged outside national jurisdictional limits in taking that migratory species.”

This means that range States also include those fisheries nations operating in high seas areas where Rhinobatos rhinobatos occurs.

Parties to CMS:

Angola, Antigua and Barbuda, Australia, Bangladesh, Benin, Cameroon, Cabo Verde, Chile, Congo, Cook Islands, Costa Rica (Cocos I.), Côte d’Ivoire, Cuba, Democratic Republic of the Congo, Djibouti, Ecuador, Egypt, Equatorial Guinea, Eritrea, France (French Polynesia, Clipperton I., Guadeloupe, Guyana, Martinique, New Caledonia), Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Honduras, India, Israel, Jordan, Madagascar, Mauritius, Netherlands (Aruba, Curaçao), Mozambique, New Zealand, Nigeria, Palau, Panama, Peru, Philippines, Portugal (Madeira), Samoa, Sao Tomé and Principe, Saudi Arabia, Senegal, Somalia, South Africa, Spain (Canary Is.), Sri Lanka, Tanzania, United Republic of, Togo, United Kingdom (British Virgin Islands, Cayman Islands, Montserrat, Turks and Caicos Islands.), Yemen.

9. Consultations
10. Additional remarks

11. References

Capapé, C., Zaouali, J., Quignard, J.P., 1975. First data on the reproductive cycle of *Rhinobatos rhinobatos* (Linnaeus, 1758) and *Rhinobatos cemiculus* (Geoffroy Saint-Hilaire, 1817) the Tunisian coast.

Mediterranean International Trawl Survey MEDITS. 2016. TM list (all species). http://www.sibm.it/MEDITS%202011/Liste%20in%20pdf/TM%20list%20all%20species.pdf

