Summary:

These statements have been submitted by the Chair of the CMS Scientific Council and the Chair of the CMS Preventing Poisoning Working Group with the request that they be posted as an information document for COP11. The document includes a statement on Wildlife and Human Health Risks from Lead-Based Ammunition in Europe produced in October 2014 by European scientists, and another statement produced in March 2013, mainly by American scientists, on Health Risks from Lead-Based Ammunition in the Environment.
For reasons of economy, documents are printed in a limited number, and will not be distributed at the Meeting. Delegates are requested to bring their copy to the meeting and not to request additional copies.
Wildlife and Human Health Risks from Lead-Based Ammunition in Europe

A Consensus Statement by Scientists

On 22 March 2013 a group of eminent scientists signed a consensus statement on Health Risks from Lead-Based Ammunition in the Environment with a particular focus on impacts in the USA http://www.escholarship.org/uc/item/6dq3h64x. The statement below, based upon the USA statement, is intended to perform a similar function, but with a focus on impacts in Europe.

We, the undersigned, with scientific expertise in lead and human and/or environmental health, draw attention to the overwhelming scientific evidence, summarized below, on the toxic effects of lead on human and wildlife health. In light of this evidence, we support action in Europe to reduce and eventually eliminate the release of lead to the environment through the discharge of lead-based ammunition, in order to protect human and environmental health.

1) Lead is a non-essential toxic metal that occurs naturally, but has been widely distributed by human activities. Today, most exposure to lead in the general population across the European Union (EU) is from the diet (EFSA 2010) because other sources of exposure, such as plumbing, paints and petrol have been reduced by regulation. Lead is one of the most well-studied contaminants and overwhelming scientific evidence demonstrates that:

a. Lead is well established to be toxic to multiple physiological systems in humans and other vertebrate animals. The most sensitive systems are the haematopoietic, nervous, cardiovascular and renal systems (EFSA 2010). In addition, The International Agency for Research on Cancer classified inorganic lead as probably carcinogenic to humans (Group 2A) (IARC 2006).

b. No ‘safe’ blood lead level in children has been identified below which negative health effects cannot be detected (CDC 2012). Absorption of lead leading to even slightly elevated levels injures the developing human brain and is associated with lasting effects on intelligence (IQ) and behaviour.

2) Due to lead’s harmful effects, most previously significant sources of lead in the environment in Europe, such as leaded petrol, lead-based paint, and lead-based solder, have been significantly reduced or eliminated over the past 50 years. EU standards of lead in drinking water have been, and continue to be, substantially reduced to protect public health (SCHER 2011). Lead-based ammunition is the most significant unregulated source of lead deliberately emitted into the environment in the EU.

a. The release of toxic lead into the environment via the discharge of lead-based ammunition is largely unregulated. Other major categories of lead consumption, such as leaded batteries and sheet lead/lead pipes, are largely regulated in their environmental discharge/disposal.

3) The discharge and accumulation of spent lead-based ammunition in the environment poses significant health risks to humans and wildlife. The best available scientific evidence demonstrates that:

a. The discharge of lead-based ammunition substantially increases environmental lead levels, especially in areas of concentrated shooting activity (Mellor & McCartney 1994; Rooney et al. 1999).

b. While regulations exist and are effective in restricting the use of lead gunshot in some EU countries (Denmark and the Netherlands), most EU countries have only partial or limited restrictions on lead ammunition use. Emissions of ammunition-derived lead to the environment
remain because of lack of regulation and, where regulations exist, poor compliance and lack of effective enforcement (AEWA 2012). For example, compliance with regulations introduced in 1999 restricting the use of lead gunshot for shooting wildfowl in England has been shown to be very low with 70% of locally-sourced wildfowl purchased having been shot illegally with lead (Cromie et al. 2010). Despite this, there have been no primary prosecutions and only one secondary prosecution for non-compliance with the regulations.

c. Birds such as gamebirds and wildfowl ingest spent lead gunshot mistakenly for food or the grit that helps them to grind up food in their muscular gizzards. Ingestion of lead gunshot by waterfowl is associated with increased death rates (Tavecchia et al. 2001). Large numbers of birds of these kinds suffer and die annually in Europe because of poisoning due to ingested ammunition-derived lead (Mateo 2009).

d. Lead-based gunshot and bullets used to shoot wildlife can fragment into numerous small pieces within the animal, some of which may be distant from the wound tract; many of these are sufficiently small to be easily ingested by scavenging animals or incorporated into meat prepared for human consumption (Hunt et al. 2009; Grund et al. 2010; Knott et al. 2010; Pain et al. 2010).

e. Although the effects of ingestion of spent lead ammunition are best documented for waterfowl, they have also been reported for more than 60 bird species from other taxonomic groups (Pain et al. 2009). Lead poisoning from the ingestion of spent lead-based ammunition fragments in carrion and prey animals is a significant source of poisoning and mortality in predatory and scavenging birds of prey, including European vultures (Donázar et al. 2002; Mateo 2009) and the white-tailed eagle *Haliaeetus albicilla*, in parts of the EU (Pain et al. 1993, 1997; Fisher et al. 2006; Grund et al. 2010; Nadjafzadeh et al. 2013).

f. Lead-based ammunition is a significant source of lead exposure in humans that ingest wild game (Hanning et al. 2003; Johansen et al. 2006; Tsuji et al. 2008), and blood lead levels in people consuming game meat shot with lead-based ammunition have been shown to be elevated in European countries and elsewhere, in proportion to the amounts and frequency of game consumed (Dewailly et al. 2001; Iqbal 2009; Meltzer et al. 2013; Bjermo et al. 2013).

g. High concentrations of ammunition-derived lead are often found in edible tissues of both small and large game animals shot with lead ammunition and can be present in tissues at a considerable distance from obvious wounding so that they are difficult to remove during food preparation (Pain et al. 2010; FSA 2012a). Meat from game animals contaminated in this way is consumed by people associated with shooting and, in some countries (such as in the UK), is also sold in supermarkets and other food outlets to consumers who are largely unaware of associated risks.

h. Several EU countries have produced advice on the risks to human health of frequent consumption of game meat shot with lead ammunition, particularly to young children, pregnant women or women wishing to become pregnant (BfR 2011; AESAN 2012; FSA 2012b; VKM 2013).

4) Non-toxic alternatives to lead ammunition have been developed, are widely available, and perform well (Thomas 2013). The sport of shooting and its associated trade in ammunition and other supplies appears to remain viable in countries where the use of lead shot in ammunition has already been banned (e.g. within Europe, lead shot in ammunition has been banned for all shooting since 1993 in the Netherlands, since 1996 in Denmark and since 2005 in Norway).

Based upon (1) overwhelming evidence for the toxic effects of lead in humans and wildlife, even at very low exposure levels, (2) convincing data that the discharge of lead-based ammunition into the environment poses significant risks of lead exposure to humans and wildlife, and (3) the availability and suitability of several non-lead alternative products for hunting, we support a phase out and eventual elimination of the use of lead-based ammunition and its replacement with non-toxic alternatives.
Signed,

Dr Aksel Bernhoft, Senior Researcher, Norwegian Veterinary Institute, Department of Health Surveillance, Postbox 750 Sentrum, NO-0106 Oslo, Norway

Professor Alan R. Boobis OBE PhD FSB FBTS, Professor of Biochemical Pharmacology & Director of Public Health England Toxicology Unit, Centre for Pharmacology & Therapeutics, Division of Experimental Medicine, Department of Medicine, Imperial College London, Hammersmith Campus, Ducane Road, London W12 0NN, UK

Dr Ruth Cromie, Head of Wildlife Health, Wildfowl & Wetlands Trust, Slimbridge, Gloucestershire GL2 7BT, UK

Dr Olivier Devineau, Associate Professor, Hedmark University College, Campus Evenstad, 2480 Koppang, Norway

Professor José Antonio Donázar, Research Professor, Department of Conservation Biology, Estación Biológica de Doñana CSIC, Avenida de America Vespucio s/n, Isla de la Cartuja, E-41092 Sevilla, Spain

Professor John H. Duffus, The Edinburgh Centre for Toxicology, 43 Mansionhouse Road, Edinburgh EH9 2JD, UK

Professor Alan Emond, Professor of Child Health, School of Social and Community Medicine, University of Bristol, St Michael’s Hospital, Southwell Street, Bristol BS2 8EG, UK

Professor Jerzy Falandysz, Department of Environmental Chemistry, Ecotoxicology & Food Toxicology, Gdańsk University, 63 Wita Stwosza Str., 6380-308 Gdańsk, Poland

Professor Miguel Ferrer, Research Professor, Spanish Council for Scientific Research (CSIC), Avd. María Luisa, pabellón del Perú, Sevilla 41013, Spain

Mr Ian Fisher, International Species Recovery Information Manager, Royal Society for the Protection of Birds, The Lodge, Sandy SG19 2DL, UK

Professor Philippe Grandjean MD, Professor of Environmental Medicine, University of Southern Denmark & Harvard School of Public Health, 5000 Odense C, Denmark

Professor Rhys E. Green, Honorary Professor of Conservation Science & Principal Research Biologist (RSPB), Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK

Professor Joan O. Grimalt, Professor of Environmental Chemistry at CSIC, Director of the Institute of Environmental Assessment and Water Research & Director of the Center of Research and Development, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona, 18, 08034-Barcelona, Spain

Dr Jadwiga Gzyl, Researcher (retired), Institute for Ecology of Industrial Areas (IETU), Kossutha Str. no. 6, 40-832 Katowice, Poland

Professor Fernando Hiraldo, Research Professor, Estación Biológica de Doñana, Spanish Council for Scientific Research (CSIC), Spain
Dr. med. vet. Oliver Krone, Veterinary specialist for zoo & captive and wild animals, Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Strasse, 17, D-10315 Berlin, Germany

Professor Jean-Dominique Lebreton, Research Director at CNRS & Member of French Academy of Sciences, Centre d’Ecologie Fonctionnelle et Evolutive (CEFE/CNRS), Campus du CNRS, 1919 route de Mende, 34293 Montpellier 5, France

Dr Rafael Mateo, Group of Wildlife Toxicology, Instituto de Investigación en Recursos Cinegéticos (IREC), Spanish Institute of Game and Wildlife Research, CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13071 Ciudad Real, Spain

Professor Andrew A. Meharg FRSE, School of Biological Sciences, University Road, Belfast BT7 1NN, UK

Professor Antonio Mutti MD, Professor of Occupational Medicine and Chair of Department of Clinical and Experimental Medicine at the University of Parma & Head of Occupational Medicine and Industrial Toxicology at the University Hospital of Parma, Department of Clinical and Experimental Medicine, Via Gramsci 14 – 43126 Parma, Italy

Professor Ian Newton DSc OBE FRS FRSE, Emeritus Fellow, NERC Centre for Ecology & Hydrology, Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK

Professor John O’Halloran, Professor of Zoology, School of Biological, Earth and Environmental Science, University College Cork, Ireland

Professor Christopher M. Perrins LVO FRS, Leverhulme Emeritus Fellow, Edward Grey Institute for Field Ornithology, Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK

Dr Roger Pradel, Research Director, Equipe Biostatistique et Biologie des Populations, Centre d’Ecologie Fonctionnelle et Evolutive (CEFE/CNRS), Campus du CNRS, 1919 route de Mende, 34293 Montpellier 5, France

Professor Richard F. Shore, Section Head and Head of Site, NERC Centre for Ecology & Hydrology, Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP, UK

Professor Chris J. Spray MBE, Chair of Water Science and Policy, UNESCO IHP-HELP Centre for Water Law, Policy and Science, University of Dundee, Dundee DD1 4HN, UK

Dr Brian Stollery, Senior Lecturer, School of Experimental Psychology, Priory Road, Clifton, Bristol BS8 1TU, UK

Dr Mark Taggart, Senior Research Fellow & Theme Leader, Environmental Contamination and Ecological Health, Environmental Research Institute, University of the Highlands and Islands, Castle Street, Thurso, Caithness KW14 7JD, UK

Dr Giacomo Tavecchia, Tenured Researcher, Mediterranean Institute for Advanced Studies (IMEDEA - CSIC-UIB), Miquel Marquès, 21 - 07190 Esporles, Spanish Council for Scientific Research (CSIC), Balearic Islands, Spain

Professor Vernon G. Thomas, Professor Emeritus, Department of Integrative Biology, College of Biological Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
Suggested citation

References

FSA, 2012a. Risk to human health from exposure to lead from lead bullets and shot used to shoot wild game animals. Food Standards Agency. Available from: http://www.foodbase.org.uk//admintools/reportdocuments/776-1-1354_Risk_assessment_for_lead_in_wild_game_-_Final_5_October.pdf

Available from: http://www.zoo.cam.ac.uk/leadammuntionstatement/

Title:
Health Risks from Lead-Based Ammunition in the Environment - A Consensus Statement of Scientists

Authors:
Bellinger, David C.
Bradman, Asa
Burger, Joanna
Cade, Tom J.
Cory-Slechta, Deborah A.
Doak, Daniel
Finkelstein, Myra
Flegal, A. Russell
Fry, Michael
Green, Rhys E.
Hu, Howard
Jacobs, David E.
Johnson, Christine
Kelly, Terra
Kosnett, Michael
Landrigan, Philip J.
Lanphear, Bruce
Mielke, Howard W.
Newton, Ian
Pokras, Mark A.
Poppenga, Robert H.
Redig, Patrick T.
Rideout, Bruce A.
Risebrough, Robert W.
Scheuhammer, Tony
Silbergeld, Ellen
Smith, Donald R.
Strupp, Barbara
Thomas, Vernon G.
Wright, Robert

Publication Date:
03-22-2013
Series:
Other Scholarly Works
Permalink:
http://www.escholarship.org/uc/item/6dq3h64x
Keywords:
Lead, Ammunition, Health risks
Health Risks from Lead-Based Ammunition in the Environment

A Consensus Statement of Scientists

March 22, 2013

We, the undersigned, with scientific expertise in lead and environmental health, endorse the overwhelming scientific evidence on the toxic effects of lead on human and wildlife health. In light of this evidence, we support the reduction and eventual elimination of lead released to the environment through the discharge of lead-based ammunition, in order to protect human and environmental health.

1) Lead is one of the most well-studied of all anthropogenic toxins and there is overwhelming scientific evidence that demonstrates:

 a) Lead is toxic to multiple physiological systems in vertebrate organisms, including the central and peripheral nervous, renal, cardiovascular, reproductive, immune, and hematologic systems. Lead is also potentially carcinogenic; lead is officially recognized as a carcinogen and reproductive toxin in California, and the International Agency for Research on Cancer, the National Toxicology Program, and the US Environmental Protection Agency have identified lead as likely to be carcinogenic to humans.
 b) There is no level of lead exposure to children known to be without deleterious effects (CDC, 2012). Exposure in childhood to even slightly elevated levels of lead produce lasting neurological deficits in intelligence and behavior.
 c) Lead is also known to be toxic across different vertebrate organisms, including mammalian and avian species.

2) Lead-based ammunition is likely the greatest, largely unregulated source of lead knowingly discharged into the environment in the United States. In contrast, other significant sources of lead in the environment, such as leaded gasoline, lead-based paint, and lead-based solder, are recognized as harmful and have been significantly reduced or eliminated over the past 50 years.

 a) Lead-based ammunition production is the second largest annual use of lead in the United States, accounting for over 60,000 metric tons consumed in 2012, second only to the consumption of lead in the manufacture of storage batteries (USGS, 2013).
 b) The release of toxic lead into the environment via the discharge of lead-based ammunition is largely unregulated. Other major categories of lead consumption, such as leaded batteries and sheet lead/lead pipes, are regulated in their environmental discharge/disposal.

3) The discharge of lead-based ammunition and accumulation of spent lead-based ammunition in the environment poses significant health risks to humans and wildlife. The best available scientific evidence demonstrates:

 a) The discharge of lead-based ammunition substantially increases environmental lead levels, especially in areas of concentrated shooting activity (USEPA ISA for Lead draft report, 2012).
 b) The discharge of lead-based ammunition is known to pose risks of elevated lead exposure to gun users (NRC, 2012).
 c) Lead-based bullets used to shoot wildlife can fragment into hundreds of small pieces, with a large proportion being sufficiently small to be easily ingested by scavenging animals or incorporated into processed meat for human consumption (Pauli and Burkirk, 2007; Hunt et al., 2009; Knott et al., 2010).
d) Lead-based ammunition is a significant source of lead exposure in humans that ingest wild game (Hanning et al., 2003; Levesque et al., 2003; Johansen et al., 2006; Tsuji et al., 2008), and hunters consuming meat shot with lead-based ammunition have been shown to have lead pellets/fragments in their gastrointestinal tract (Carey, 1977; Reddy, 1985).

e) Lead poisoning from ingestion of spent lead-based ammunition fragments poses a serious and significant threat to California wildlife.

i. Spent lead-based ammunition is the principal source of lead exposure to the endangered California condor, and lead poisoning in condors is preventing their successful recovery in the wild (Church et al., 2006; Woods et al., 2007; Green et al., 2008; Parish et al., 2009; Rideout et al., 2012; Finkelstein et al., 2012).

ii. Many other wild scavenging species, such as golden eagles, bald eagles, ravens, turkey vultures, and pumas are known to be exposed to and affected by lead (Wayland and Bollinger, 1999; Clark and Scheuhammer, 2003; Fisher et al., 2006; Craighead and Bedrosian, 2008; Stauber et al., 2010; Kelly and Johnson, 2011; Burco et al., 2012).

Based on overwhelming evidence for the toxic effects of lead in humans and wildlife, even at very low exposure levels, convincing data that the discharge of lead-based ammunition into the environment poses significant risks of lead exposure to humans and wildlife, and the availability of non-lead alternative products for hunting (Thomas, 2013), we support reducing and eventually eliminating the introduction of lead into the environment from lead-based ammunition.

Signed,

David C. Bellinger, PhD, MSc, Professor
Neurology and Environmental Health
Harvard Medical School
Harvard School of Public Health
Boston, MA 02115

Asa Bradman, PhD, MS
Center for Environmental Research and Children’s Health (CERCH)
School of Public Health
University of California, Berkeley
Berkeley, CA 94720

Joanna Burger, PhD
Distinguished Professor of Biology
604 Allison Road
Rutgers University
Piscataway, NJ 08854

Tom J. Cade, PhD
Professor Emeritus of Zoology
Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY
6484 Hollilynn Dr.
Boise, ID 83709

Deborah A. Cory-Slechta, PhD
Professor of Environmental Medicine and of Pediatrics
University of Rochester School of Medicine
Box EHSC
Rochester, NY 14642

Daniel Doak, PhD
Professor and Colorado Chair in Environmental Studies
Environmental Studies Program
University of Colorado Boulder
Boulder, CO 80309

Myra Finkelstein, PhD
Adjunct Assistant Professor
Microbiology and Environmental Toxicology
University of California
Santa Cruz, CA 95064

A. Russell Flegal, PhD
Professor
Department of Earth & Planetary Sciences
University of California, Santa Cruz
Santa Cruz, CA 95064
Michael Fry, PhD
Research Physiologist (retired)
Department of Avian Sciences
University of California, Davis
Davis, CA 95616

Rhys E. Green, PhD
Professor of Conservation Science
University of Cambridge
Department of Zoology
Downing Street
Cambridge CB2 3EJ
United Kingdom

Howard Hu, MD, MPH, ScD
Director & Professor
Dalla Lana School of Public Health
University of Toronto
Toronto, ON M5T 3M7
Canada

David E. Jacobs, PhD, CIH
Research Director, National Center for Healthy Housing
Adjunct Associate Professor, University of Illinois at Chicago School of Public Health
Washington DC 20016

Christine Johnson, DVM, PhD
Associate Professor of Ecosystem Health and Epidemiology
School of Veterinary Medicine, Wildlife Health Center
University of California, Davis
Davis, CA 95616

Terra Kelly, DVM, PhD, Dipl. ACZM
Wildlife Veterinarian and Epidemiologist
School of Veterinary Medicine, Wildlife Health Center
University of California, Davis
Davis, CA 95616

Michael Kosnett, MD, MPH
Associate Clinical Professor
Division of Clinical Pharmacology & Toxicology
Department of Medicine, University of Colorado School of Medicine
Department of Environmental and Occupational Health,
Colorado School of Public Health
Aurora, CO 80045

Philip J. Landrigan, MD, MSc
Dean for Global Health
Ethel H. Wise Professor and Chairman
Department of Preventive Medicine
Professor of Pediatrics
Director, Children’s Environmental Health Center
Mount Sinai School of Medicine
New York, NY 10029

Bruce Lanphear, MD, MPH
Clinician Scientist, Child & Family Research Institute
BC Children’s Hospital Professor
Simon Fraser University
Vancouver, BC V6H 3N1
Canada

Howard W. Mielke, PhD
Professor
Department of Pharmacology
Tulane University School of Medicine
New Orleans, LA 70112

Ian Newton, D.Sc, OBE, FRS, FRSE
Emeritus Fellow,
Centre for Ecology & Hydrology
Benson Lane, Crowmarsh Gifford
Wallingford, Oxon OX10 8BB
United Kingdom

Mark A. Pokras, DVM
Associate Professor
Wildlife Clinic & Center for Conservation Medicine Tufts University
Cummings School of Veterinary Medicine
N. Grafton, MA 01536

Robert H. Poppenga, DVM, PhD, DABVT
CAHFS Toxicology Laboratory
School of Veterinary Medicine
University of California
West Health Sciences Drive
Davis, CA 95616

Patrick T. Redig, DVM, PhD
Professor of Avian Medicine & Surgery
Founder & Director Emeritus of The Raptor Center
University of Minnesota
St. Paul, MN 55108
Bruce A. Rideout, DVM, PhD
Wildlife Disease Laboratories
Institute for Conservation Research
San Diego Zoo Global
PO Box 120551
San Diego, CA 92112

Robert W. Risebrough, PhD
Research Ecologist (retired)
University of California, Berkeley and Santa Cruz
Executive Director, Bodega Bay Institute
2711 Piedmont Avenue
Berkeley, CA 94705

Tony Scheuhammer, PhD
Emeritus Scientist
National Wildlife Research Centre
Carleton University
Ottawa, ON K1A 0H3
Canada

Ellen Silbergeld, PhD
Professor
Department of Environmental Health Sciences
Department of Epidemiology
Department of Health Policy and Management
Johns Hopkins University
Baltimore, MD 21205

Donald R. Smith, PhD
Professor
Microbiology and Environmental Toxicology
University of California
Santa Cruz, CA 95064

Barbara Strupp, PhD
Professor
Division of Nutritional Sciences
Cornell University
Ithaca, NY 14853

Vernon G. Thomas, BA, MA (Oxon), MSc, PhD
Professor Emeritus
Department of Integrative Biology
College of Biological Science
University of Guelph,
Guelph, ON N1G 2W1
Canada

Robert Wright, MD, MPH
Professor of Pediatrics
Department of Preventive Medicine
Mount Sinai School of Medicine
New York, NY 10029
References

409:95–99.

